Distributed Algorithms for Finding
Central Paths in Tree Networks

ESTHERJENNINGS

Computer Science Department, California State Polytechnic University, Pomona
Email: ehjennings@csupomona.edu

Given a graph G = (V, E) and a path P, let d(v, P) be the distance from vertexv € V to path

P. A path-center is a path which minimizes the eccentricitye(P) = max,ey d(v, P) such that for
every path P’ in G, e(P) < e(P’), and for every subpath P” c P, e(P) < e(P”). Similarly, a
core is a path which minimizes the distancel(P) = ),y d(v, P) such that for every path P’

in G, d(P) < d(P'), and for every subpath P” c P, d(P) < d(P""). We present distributed
algorithms for finding path-centers and cores in asynchronous tree networks. We then extend these
to compute a subset-centrum path in trees which minimizes the distance with respect to a subset of
vertices,dg(v, P) = ), cgd(v, P), where S € V. The time and communication complexities of
these algorithms areO (D) and O (n) respectively, whereD is the diameter andn is the number of

vertices (edges) of the network. These algorithms are asymptotically optimal.
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1. INTRODUCTION and [5] respectively. However, no distributed algorithms
) ) for these problems are known to date. Note that the path-
Given a network, the location problem concems how 1o center and core problems are NP-complete in general graphs

choose the ‘best’ sites to set up certain facilities to serve pecause we can reduce the Hamiltonian path problem to
the other sites. In general, one would like to set up a these problems [6].

facility at a ‘central’ location. Two extensively studied
criteria for centrality are:minimax(centers) andninisum
(medians) [1, 2, 3]. Acenterof a graph is a vertex such
that the maximum distance fromto any other vertex is
minimized. Amedianof a graph is a vertem such that the
maximum sum of distances from to all the other vertices

is minimized. Alternatively, a mediam minimizes the
average distance from to all the other vertices. So, if the
goal is to have fast response from the facility, then we should
locate the facility at the center of the network. However, if . ; i
the main concern is the total communication cost to all the of these algorithms ar@ (D) and O () respectively; the

sites, then we should locate the facility at the median of the algonthms'are asymptotically optimal. i
network. We consider the standard model of an asynchronous point-

The concepts of centers and medians have been extendefP-Point communication network (e.g. [8]). The network
to path-centers and cores, where facilities are located along’S represented by an undirected simple grap arrtices

In this paper, we apply thbeasic tree techniquef [7]
to obtain distributed algorithms for finding path-centers
and cores in trees. Considering the possibility of multiple
initiators in the algorithm of [7] the basic tree technique uses
at most 2 +s — 2 messages arf@D/2] time, where: is the
number of verticesD is the diameter, andis the number of
initiators. We also extend the concept of cores to the subset-
centrum path, and present a distributed algorithm for solving
this problem. The time and communication complexities

a path. Given a graplé = (V, E) and a pathP, let (processors) and edges (bidirectional communication
d(v, P) be the distance from vertex € V to path P. In links). Each processor has a unique identity. There is no
[4], Slater defined theath-centerof a graphG as a path? shargd memory and processors comm.unicate by message
with minimum eccentricity. Formally, a path-center is a path Passing. Each message containgogn) bits. For the sake
which minimizes the eccentriciy( P) = max.cy d(v, P) of time complexity analysis, we assume that each message
such that for every pat® in G, e(P) < e(P'), and for incurs a delay of at most one unit of time [9]. Note that the
every subpathP” c P, e(P) < e(p”)__ In [5], Morgan delay assumption is only used éstimatethe performance

and Slater defined theore of a graphG as the pathP of our algorithms. This does not imply that our model is

which minimizes the total distance from all vertices@f  Synchronous, neither does it affect the correctness of our
to P. Formally, a core is a path which minimizes the @algorithms. That_is, our algorithm_s work correctly even in
distanced(P) = ",y d(v, P) such that for every path  the absence of this delay assumption.

P’ in G, d(P) < d(P’), and for every subpatlt” c P, In Sections 2, 3 and 4, we present our algorithms
d(P) < d(P"”). Linear-time sequential algorithms for for finding path-centers, cores and subset-centrum paths
finding path-centers and cores in trees were given in [4] respectively. Section 5 concludes the paper.
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2. PATH-CENTER wheren is the number of verticed) is the diameter, and
is the number of initiators.
A maximal path P with minimum eccentricity can be
ound usingD/2 time andi — 1 messages. SuppasgP) is
not minimum, then there is a pathsuch that(R) < e(P).

An important observation in [4, Theorem 4] states that the
path-center of a tree must contain the center. Therefore, weg
propose the following two-step algorithm for finding a path-

centerQ: Let ¢ be the center(s) of. From [10, Lemma 3.1}y € P
algorithm in [7]. on the path betweenand one of the leaves df such that

(i) From the center, extend a maximal path with d(v, p) < d(v,r), wherep andr are end-points of* and
minimum eccentricity. Then shorteR to obtain the R respectively, and botp andr are on the same side of
minimal sub-patiQ of P such that/(Q) = d(P). with respect tac. Then, in our algorithmy would choose

to extend the path towandinstead of towarg. Since the

To extend a maximal patt® from the center such that algorithmyields a patt?, this implies that such a vertex as
d(P) is minimized, each vertex must store the maximum does not exist. Therefore, a pakhwith e(R) < e(P) does
distances it received from its neighbors during center not exist, contradicting our assumption. The time required
finding. From the stored information, a center can easily is D/2 because messages are sent from the center{sjof
determine whether it is the only center or one of the two directions simultaneously.
two centers. Letl' be rooted at the center (break ties Knowing P, the path-cente@ can be found using— 1+
deterministically using processor identities). If there is only D—2¢(P) messages and+D/2—e(P) time. SinceQ C P
one center, thenc will extend P in two directions, to the ande(P) is minimum,e(Q) is also minimum. Furthermore,
children from which the two largest distances were received. Q is the minimal sub-path wheeg Q) = ¢(P) because the
If there are two centers, theR contains both centers and distance from the end-points @f to the leaves is equal to
the edge connecting them; then, each of the centers wille(P). The gathering of maximum distances with respect to
extendP in one direction, to the child (not the other center) P requiresn — 1 messages an time. For the marking
from which the largest distance was received. From the of O, D — 2¢(P) messages are sent. Since this is done on
center(s),(extend messages are sent to exteAd Each Q in both directions from the root (a center) Bf the time
vertex v receiving an{extend message on edge marks required isD/2 — e(P). O
e as belonging taP. If v is not a leaf, then it propagates
an (extend message to the child from which it received
the largest distance. If several choices are possible, then3. CORE
break ties deterministically. In order to activate all the leaves
to start the computation of c P, as a vertex sends its
(extend message to a child, it also sends @ttivate)
message to each of its other children.

The computation oD is started by the leaves when they
have received either af@xtend or an(activate) message.
Maximum distance information with respect®as gathered
from the leaves. While traversing toward the center, an
internal vertexv ¢ P increments the largest of all received
distances by one. A vertex oR will merely pass the
maximum distance it received. When the roofofeceives
the maximum distance, it sends &hort, dist) message on
P toward the leaves, whermdist is the maximum distance
received with respect ta®. It is obvious that we can
shortenP from both ends bylist edges without increasing
e(P). The shortened patl? € P is the path-center. The
propagation ofshort, dist) stops when a vertex af atdist
from a leaf is reached. A vertex knows its distance from the
leaves because this information is stored previously. Every
vertex which received éshort, dist) message on edgewill
marke as belonging to the path-cent@r

In contrast to a path-center, a core is hot hecessarily unique
and does not necessarily pass through a mediaf of
[5]. Therefore, knowing the median does not help. In
[5], Morgan and Slater presented a linear-time sequential
algorithm which computes a core of tree networks. Optimal
parallel algorithms for the computation of a core of
tree networks using tree contraction techniques have been
presented in [11, 12]; these algorithms u&én/logn)
processors an@ (logn) time on the REw PRAM. The
main observation used in these algorithms is that an end-
pointv of a core can be identified by finding@oted core

We combine this observation with the basic tree technique
to obtain an asynchronous distributed algorithm for finding
cores of tree networks i® (D) time usingO (n) messages
whereD is the diameter and is the number of vertices of
the network. We assume that all network edges have unit
weight. Our algorithm may have multiple initiators. When
the algorithm terminates, every vertex knows whether it is
a vertex of the computed com and which of its incident
edges are irP. The algorithm can be easily modified to find
a core in a tree network where edges have arbitrary positive

THEOREM2.1.A path-center of a tre€ = (V, E) can weights. Lemma 3.1 states the effect on the sum of distances
be found in[7D/2] time usingdn + 3D/2 + s messages, as a pathP is being extended to include more vertices.

where|V| = n, D is the diameter of", ands is the number LEMMA 3.1. [5, Section 2)Let v be a vertex on a core

of initiators. P where|P| > 1, and let the vertices adjacent to be
Proof. From [7], the center(s) of a treE can be found by ui, u2, ..., usw). LetT,, denote the subtree rooted af
using at most2 + D/2 + s — 2 messages ifidD /2] time, not containingv. The following conditions hold for a vertex
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weT,,1<i<dsw: A)Ifu & P, thend(w, P) = exists. From [10, Lemma 3.1], either one or two vertices
d(w,v). (2)If u; € P, thend(w, P) < d(w, v). become saturated. If there is only one saturated vertex, then
it is chosen as the roet Otherwise, there are exactly two
adjacent saturated vertices contending to be the root. Ties
are then broken by unique processor identities; for example,
the processor with the smaller identity wins.
At vertexr, r knows which of its incident edges leads to
a vertexv such thatedudp, -, ,) is maximum. This marked
path with the maximal reduction satisfies Lemma 3.2(3),
so an end-poinb of a core of T is computed correctly
DEFINITION 3.1. [11, Lemma 1] (reduction)et Q be a atr. Since we are merely using the basic tree technique
path ending at. The total reduction inl(Q) by extending to gather information concerning the sizes of subtrees and
Q toinclude the vertices @f;_,, is reducos—,) = > |Twl, reductions, the time and messages used[afe/2] and
wherew is a vertex orps—., excludings, andT,, consists of 2n + s — 2 respectively. A message size Of(logn) bits
w and those subtrees rooted at the neighbors afhich do suffices because the size of a subtree is bounded land
not contains. reduction is bounded by?/2. O

That is, if P is extended fromv to u;, u; ¢ P, then
the distances from vertices € T,, to P will decrease.
However, an arbitrary choice of; does not guarantee that
the extended path is a core. L@t , denote the path from
vtouinT. In[11, Lemma 1], the total decrease in sum of
distances fromw € T, to P (extended from) is called the
reduction designated a®dudoy— ;).

LEMMA 3.2. (1) A core connects two leaves &f [12,
Lemma 1] (2) Let P, be arooted core, i.e. a path containing
r which minimizes the sum of distances from other vertices
to P.. Then a core and’. must share at least one common
vertex[12, Lemma 2] (3) Let tree T be rooted at an
arbitrary vertexr. A vertexv is in a core if redu¢o,—.,)
the maximum possible val(El, Lemma 3]

Let 7, denote the tree network rooted at Note that
any vertex: of 7, knows the maximum reduction obtainable
from each of its children after saturatiorvatThe only piece
of information not available at is how much reduction it
can obtain from the direction of its parent. From the root
T,, we have a marked path leadinguavhereredudo, )
is maximum. The root will then send a message along the

Note that there may be several cores7af so that the marked path to saturate every vertex betweamdv. The
choice ofv in Lemma 3.2(3) may not be unique. To find size of subtree and reduction (from the directiorrptire

a core of a tree network, we first root the netwdrkat updated at each vertex along the path and are passed with
an arbitrary vertex:. Then we find an end-point of a the message as it propagates toward he saturation ob
core P of T by using Lemma 3.2(3). Once is found, can be regarded as re-rooting the tree network la¢cause

we extend a core® from v so that maximum reduction is by the timev becomes saturated, every vertexfinknows
achieved. Since more than one core is possible, we break tieghe reduction obtainable from each of its childrerTin
arbitrarily. The algorithms described in Lemmas 3.3 and 3.4
follow the algorithm of [5], except we combine their method
with the basic tree technique of [7] to obtain a distributed
algorithm. The non-trivial part is that the complexity of our
distributed core algorithm is less than the complexities of Proof. Given an end-point of a coreP of T, and by the
simply running a distributed rooted core algorithm twice. definition of a core, the other end-pointof P (which by
Lemma 3.2(1) must be a leaf) can be found by extending a
path fromv in the direction which maximizegdudo,_ ).
Then, the unique path connectintp v’ is optimal as a core.
Note that the choice af might not be unique. d

LEMMA 3.4.Given an end-point of a core P of a tree
T, the other end-point’ of P can be found by finding a
vertexv’ such that redu@,_. /) is maximized.

LEMMA 3.3.Given a tree networl' = (V, E), an end-
point v of a core is known at a saturated vertex within
[3D/2] time using at mos2n + s — 2 messages, where
n = |V|, D is the diameter off’, ands is the number of
initiators. THEOREM3.1.Givenatreel = (V, E), acore ofT can

: . ' be computed by exchangi@g + 2D + s — 2 messages in
Proof. We apply the basic tree technique to define a root 3D time, where: = |V|, D is the diameter of', ands is the

r which is a saturated vertex. During the backward phase, number of initiators

the size of the traversed subtree and the largest reduction '

obtainable by extending a path into that subtree are reportedProof. The correctness of the algorithm follows from
When a lea is activated, it sends goarent, |T;|, reduc= Lemma 3.2 and Lemmas 3.3, 3.4. From Lemma 3.3, the first
1) message to its only neighbor. When an internal vertex end-pointv of a coreP € T is known at a saturated vertex

u has received gparent, |T;|, redug) message from all  r within [3D/2] time by exchanging at mosu2t s — 2

but one of its edges, it marks the edge on which the messages. Supposes saturated at timé + D after the
maximumredug is received. If the maximum reduction algorithm starts, wherke < [D/2]. Thend(r, v) is bounded

is reported on several edges, then mark one of these edgeby D — k, so the backward phase of the basic tree technique
arbitrarily. Vertexu also computes the size of its subtree and the propagating of messages to re-batt v takes at
|T,| =1+ > |T;|, and its reductiomedudo,—¢) = |T,| + most D time altogether. That is, the end-poinf a core
max(redug), wherei are the children of:. Thenu sends is saturated within ® time after the algorithm starts. The

a (parent, |T,|, redudo,—¢)) on the edge from which no  number of messages sent fronto saturatev is bounded
(parent, size redug message was received, if such an edge by D. To trace a core fromv to v’ requires at most an
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additional D messages and time. Summing these, a ¢ore
of a tree network can be computed withif 3ime using at
most 21 + 2D + s — 2 messages. O

4. GENERALIZATION TO SUBSET-CENTRUM
PATH

Suppose we are not interested in minimizing the total
distance from a facility to all the sites, but in minimizing
the total distance from the facility to certain important
sites. We define th&-distance of a pattP? asds(P) =

Y ves d(v, P). Given a graplG = (V, E) and a subsef

of vertices, wheré¢S| = k, thek-centrum path is defined as
a pathP such thatds(P) is a minimum. Intuitively, each
vertexv of S contributes a distance ef(v, P) to ds(P);
vertices outside of contribute nothing tals(P).

Given atree network = (V, E) and a subsef C V, the
strategy is to first compute a minimal subti®&eof T such
that all the verticess are contained iffs. Then, we find a
path P in Ts such thatis(P) is a minimum. Our algorithm

path which minimizes the total distance from the path to
any subset oft vertices in the tree. Fok 1, this
problem is equivalent to finding a path-center. koe n

(n being the number of vertices in the tree), this becomes
the same as finding the core. A naive approach to solve this
problem for generat is to compute all the possible subsets
each containing: vertices. Then compute the subtrée
corresponding to each subset lofvertices and apply our
subset-centrum algorithm ofis. Finally, choose the path
with the minimum total distance. This approach can be
costly depending ok. We seek an efficient algorithm for
this problem.
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contains two main phases. In phase one, we use the basic

tree technique to defings. In phase two, we modify our
core algorithm (Section 3) to find f/acentrum path inT.
Obviously, the minimum subtree containing all the vertices
of § must not have any leaves which are outsidé§ .of

From a simple analysis, we obtain that phase one requires

at most 2 + s — 2 messages anfl3D/2] time, where
n = |V|, D is the diameter off ands is the number of
initiators. Phase 2 is an execution of the modified core
algorithm onTyg with a single initiator. The modification

is in the way subtree sizes and reductions are computed.

SupposeTs hasng vertices and diameteDg. Then, this
phase usesid + 2Ds — 1 messages and’g time, where
ns < nandDg < D, becausds C T and bothTs andT

are trees. Thus, the total time and messages required are at

most 4 + 2D + s — 3 and[9D/2] respectively.

5. CONCLUSION

In this paper we presented communication and time optimal
asynchronous algorithms for finding central paths in tree
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